334 research outputs found

    Type 0 Brane Inflation from Mirage Cosmology

    Get PDF
    We consider a three-dimensional brane-universe moving in a Type 0 String background. The motion induces on the brane a cosmological evolution which, for some range of the parameters, exhibits an inflationary phase.Comment: 11 pages, latex, one figur

    Effects of a feeding strategy to increase intramuscular fat content of pork under the conditions of organic farming

    Get PDF
    In an ongoing study, the effect of the implementation of a specific feeding strategy using a high portion of home-grown grain legumes on the intramuscular fat (IMF) content of pork, is assessed under different conditions on organic farms in Germany and Austria. Preliminary results indicate that variation in the IMF content seems to be higher between farms than between treatments within each farm

    A Large Mass Hierarchy from a Small Extra Dimension

    Get PDF
    We propose a new higher-dimensional mechanism for solving the Hierarchy Problem. The Weak scale is generated from a large scale of order the Planck scale through an exponential hierarchy. However, this exponential arises not from gauge interactions but from the background metric (which is a slice of AdS_5 spacetime). This mechanism relies on the existence of only a single additional dimension. We demonstrate a simple explicit example of this mechanism with two three-branes, one of which contains the Standard Model fields. The experimental consequences of this scenario are new and dramatic. There are fundamental spin-2 excitations with mass of weak scale order, which are coupled with weak scale as opposed to gravitational strength to the standard model particles. The phenomenology of these models is quite distinct from that of large extra dimension scenarios; none of the current constraints on theories with very large extra dimensions apply.Comment: 9 pages, LaTe

    A Comment on Technical Naturalness and the Cosmological Constant

    Get PDF
    We propose a model of dynamical relaxation of the cosmological constant. Technical naturalness of the model and the present value of the vacuum energy density imply an upper bound on the supersymmetry breaking scale and the reheating temperature at the TeV scale.Comment: 10 pages, ref. adde

    Sequestering in String Theory

    Get PDF
    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification

    Gravitational Contributions to the Running Yang-Mills Coupling in Large Extra-Dimensional Brane Worlds

    Full text link
    We study the question of a modification of the running gauge coupling of Yang-Mills theories due to quantum gravitational effects in a compact large extra dimensional brane world scenario with a low energy quantum gravity scale. The ADD scenario is applied for a D=d+\delta dimensional space-time in which gravitons freely propagate, whereas the non-abelian gauge fields are confined to a d-dimensional brane. The extra dimensions are taken to be toroidal and the transverse fluctuation modes (branons) of the brane are taken into account. On this basis we have calculated the one-loop corrections due to virtual Kaluza-Klein graviton and branon modes for the gluon two- and three-point functions in an effective field theory treatment. Applying momentum cut-off regularization we find that for a d=4 brane the leading gravitational divergencies cancel irrespective of the number of extra dimensions \delta, generalizing previous results in the absence of extra-dimensions. Hence, again the Yang-Mills \beta-function receives no gravitational corrections at one-loop. This is no longer true in a `universal' extra dimensional scenario with a d>4 dimensional brane. Moreover, the subleading power-law gravitational divergencies induce higher-dimensional counterterms, which we establish in our scheme. Interestingly, for d=4 these gravitationally induced counterterms are of the form recently considered in non-abelian Lee-Wick extensions of the standard model -- now with a possible mass scale in the TeV range due to the presence of large extra dimensions.Comment: Version to be published in JHEP; 16 pages, 3 figures; v3: references update

    Warped/Composite Phenomenology Simplified

    Get PDF
    This is the first of two papers aimed at economically capturing the collider phenomenology of warped extra dimensions with bulk Standard Model fields, where the hierarchy problem is solved non-supersymmetrically. This scenario is related via the AdS/CFT correspondence to that of partial compositeness of the Standard Model. We present a purely four-dimensional, two-sector effective field theory describing the Standard Model fields and just their first Kaluza-Klein/composite excitations. This truncation, while losing some of the explanatory power and precision of the full higher-dimensional warped theory, greatly simplifies phenomenological considerations and computations. We describe the philosophy and explicit construction of our two-sector model, and also derive formulas for residual Higgs fine tuning and electroweak and flavor precision variables to help identify the most motivated parts of the parameter space. We highlight several of the most promising channels for LHC exploration. The present paper focusses on the most minimal scenario, while the companion paper addresses the even richer phenomenology of the minimal scenario of precision gauge coupling unification

    Large Extra Dimensions at Linear Colliders

    Get PDF
    In this talk, I first present the motivation for theories wherein extra spacetime dimensions can be compactified to have large magnitudes. In particular, I discuss the Arkani-Hamed, Dimopoulos, Dvali (ADD) scenario. I present the constraints that have been derived on these models from current experiments and the expectations from future colliders. I concentrate particularly on the possibilities of probing these extra dimensions at future linear colliders.Comment: Talk given at the Third International Workshop on Electron-Electron Interactions at TeV Energies (e- e- 99), Santa Cruz, California, 10-12 Dec 1999. 7 pages, LaTeX, style files attache

    Homotopy Structure of 5d Vacua

    Full text link
    It is shown that flat zero-energy solutions (vacua) of the 5d Kaluza-Klein theory admit a non-trivial homotopy structure generated by certain Kaluza-Klein excitations. These vacua consist of an infinite set of homotopically different spacetimes denoted by M5(n)\mathcal{M}^{(n)}_5, among which M5(0)\mathcal{M}^{(0)}_5 and M5(1)\mathcal{M}^{(1)}_5 are especially identified as M4×S1M_{4} \times S^{1} and M5M_5, the ground states of the 5d Kaluza-Klein theory and the 5d general relativity, respectively (where MkM_k represents the kk-dimensional Minkowski space).Comment: 8 page

    Stabilization of Sub-Millimeter Dimensions: The New Guise of the Hierarchy Problem

    Get PDF
    A new framework for solving the hierarchy problem was recently proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a \tev and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this picture the standard model fields are localized to a (3+1)(3+1)-dimensional wall or ``3-brane''. The hierarchy problem becomes isomorphic to the problem of the largeness of the extra dimensions. This is in turn inextricably linked to the cosmological constant problem, suggesting the possibility of a common solution. The radii of the extra dimensions must be prevented from both expanding to too great a size, and collapsing to the fundamental Planck length \tev^{-1}. In this paper we propose a number of mechanisms addressing this question. We argue that a positive bulk cosmological constant Λˉ\bar\Lambda can stabilize the internal manifold against expansion, and that the value of Λˉ\bar\Lambda is not unstable to radiative corrections provided that the supersymmetries of string theory are broken by dynamics on our 3-brane. We further argue that the extra dimensions can be stabilized against collapse in a phenomenologically successful way by either of two methods: 1) Large, topologically conserved quantum numbers associated with higher-form bulk U(1) gauge fields, such as the naturally occurring Ramond-Ramond gauge fields, or the winding number of bulk scalar fields. 2) The brane-lattice-crystallization of a large number of 3-branes in the bulk. These mechanisms are consistent with theoretical, laboratory, and cosmological considerations such as the absence of large time variations in Newton's constant during and after primordial nucleosynthesis, and millimeter-scale tests of gravity.Comment: Corrected referencing to important earlier work by Sundrum, errors fixed, additional discussion on radion phenomenology, conclusions unchanged, 23 pages, LaTe
    corecore